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Faulting in ZnS: Analysis  by a Two-Parameter  Model 
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The two-parameter model of Jagodzinski has been employed to calculate the X-ray scattering from 
faulted ZnS. The agreement with the observed scattering from single crystals is sufficiently close 
to establish the need for the two independent parameters to define the one-dimensional disorder. 
Departure from perfect agreement is attributable to heterogeneity, or non-randomness, of the 
faulted structure, which is probably a result of the transformation mechanism. Direct evidence of 
independently diffracting domains has been obtained in a micro-diffraction study of the bands of 
uniform birefringence which accompany the disorder. Implications from the ZnS findings are made 
for other cases of one-dimensional disorder. 

An Appendix provides intermediate equations required for calculating Jagodzinski's function 
for any combination of a and ft. 

1. Introduction 

0ne-dimensional stacking fault  disorder and its effect 
on X-ray scattering have been variously treated, 
usually with models defining a single disorder param- 
eter (Wilson, 1942; Houska & Averbach, 1958; 
Houska, Averbach & Cohen, 1960; Barrett ,  1950; 
Zachariasen, 1947). In  such models, the fraction of 
planes, .x, out of the one sequence (e.g., hexagonal) 
is the same as the fraction in the other sequence 
(e.g., cubic). However, in some cases of stacking fault  
disorder it has been indicated tha t  at  least two 
independent parameters are needed for adequately 
defining the disorder (Jagodzinski, 1949a, b; Muller, 
1952).* 

Jagodzinski provided a two-parameter model which 
was employed by Muller (1952) with faulted ZnS in 
a t tempts  to fit the observed X-ray scattering with 
calculated distribution functions. However, the few 
good fits which he reported were for special cases; 
in particular, the fits obtained with the two parameters 

and fl equal to each other represent merely the 
reduction of Jagodzinski's function to that of the 
one-parameter model. Furthermore, Muller indicated 
that very few crystals produced good fits; no reason 
was advanced for this, yet it was implied that the 
two-parameter model did generally apply to faulted 
ZnS. 

In the present work the applicability of this model 
has been re-examined. I t  is shown tha t  Jagodzinski's 
function does apply where the faulting is random, 
and tha t  the principal difficulty in obtaining good 
fits with typical ZnS crystals is tha t  these are 
fundamental ly non-random, or heterogeneous, in 
structure probably because of transformation faulting. 

* ~¥ote added in proof. Sato (1962) hns shown the appli- 
cability of the Jagodzinski model to growth-faulted CdS. 

Implications from these findings are made for other 
cases of stacking fault  disorder; with some, the one- 
parameter model may  have been incorrectly employed, 
while in others, heterogeneity may have gone un- 
noticed. The independent scattering by the X-ray 
resolved domains of a heterogeneous structure is 
additive and so cannot be represented by any single 
distribution function, whatever the model. 

2. Experimental  

(A) The ZnS crystals 
Thin needles of ZnS were grown from the vapor 

phase in the hexagonal region, > 1100 °C, by Samelson 
(1961). One batch, for unknown reasons, contained 
many unfaulted ones; these appear to be the only 
perfect synthetic wurtzite reported, except for 
whiskers (Piper & Roth, 1953). When it  was found 
tha t  the usual faulted synthetic crystals produced 
X-ray scattering of a variety of types, the general 
mat ter  of homogeneity was investigated in a separately 
reported work employing micro-beam diffraction and 
birefringence measurements (Singer, to be published). 
This established the prevalence of heterogeneity which 
could affect the quality of fit in testing the calculated 
distributions, since a random distribution of faults is 
the assumption underlying any such calculation. 
Therefore an a t tempt  was made to favor homogeneity 
by heat  treating perfect hexagonal crystals at  moder- 
ate temperatures.  The Jagodzinski model was then 
tested with these specially faulted crystals. 

Observed and calculated X-ray scattering distribu- 
tion functions are reported here for two heat treat- 
ments of the same crystal, consisting of ten minutes 
in an open capillary tube at  400 and 530 °C. In 
addition, a similar crystal was directly heated to 
530 °C. 
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In the associated work reported elsewhere (Singer, 
to be published), measurements were made of the 
birefringences produced in these crystals by the 
hearings. Results from this work relevant to the 
present study will be given in context in what follows. 

(B) Observed X-ray scattering distributions 
The (10.l) REL row may be used to represent the 

fault-sensitive rows which are those with H - K : #  3n 
(Wilson, 1942). The (10./) scattering distributions 
were obtained with filtered Cu Kc¢ radiation on film 
in 15 ° oscillation diagrams designed to bring in this 
row from the equatorial (10-0) hexagonal spot to 
beyond the (10.1). This range includes the position 
for scattering by coherent cubic domains which lies 
about § the way towards the (10.1) hexagonal spot 
from the (10.0). This cubic position may be indexed 
(10.1)8, the subscript referring to the cubic 3 layer, 
or 3L, sequence of close-packed planes. (The nomen- 
clature associated with close-packing is given in many 
of the appended refences.) The row was scanned with 
a recording microdensitometer and the observed 
transmittance record converted to an intensity distri- 
bution by means of a calibration scale. Completely 
independent rendering of the same film produced no 
detectable difference in the final intensity distribu- 
tions as plotted. 

(C) Calculated X-ray scattering distributions 
Making a slight change in a symbol used by Jagod- 

zinski, his general expression for the intensity along 
the fault-sensitive REL rows may be condensed to 

s K~(1-X~) 
I ' 

,,=2 1 - 2X, cos A8 + X~ 
where 

$' is the layer structure factor (~uller, 1952); 
A8 is the distance, in degrees, along the row, where 

adjacent hexagonal maxima are separated by 
degrees; 

K~, X, are sets of values, given by solution of 
difference equations which contain the two 
independent fault-sequence probabilities ~ and ft. 

This equation has the same form as Wilson's for 
the one-parameter model (Wilson, 1942) and reduces 
to the latter when c¢ = ft. In calculating the distribu- 
tions, use was made of Jag0dzinski's and Muller's 
intermediate calculations and also of interpolated 
values obtained as shown in the Appendix.* 

3.  R e s u l t s  

Fig. 1 shows the observed X-ray scattering for the 
two heat treatments of an initially urdaulted hex- 
agonal ZnS crystal. The crystal which was separately 

* A few non-numerica l  typographica l  errors appear  in the  
publicat ions.  

heated directly to 530 °C yielded a distribution 
practically identical with the one shown for that  
temperature. Fig. 2 compares the observed distribu- 
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Fig. 1. Observed  X - r a y  scat ter ing for 400 and 530 °C 
hea t  t r ea tmen t s  of crystal  no. 1. 
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Fig. 2. Calculated and  observed  X - r a y  scat ter ing 
for crys ta l  no. 1 faul ted  a t  400 °C. 

tion for the 400 ° heating with that  calculated by 
Jagodzinski's model for a=0.15,  fl=0-65. Calcula- 
tions were made at intervals of 0.05 in each of the two 
parameters; the fit worsened as they departed from 
the values indicated. The critical region for evaluating 
the fit---which would not necessarily apply to other 
ranges of c~ and fl--appeared to lie in the vicinity 
of the (10.1)a position. Intercomparisons among 
Figs. 1 and 2 and the other calculated distributions 
disclosed that the higher temperature had produced 
a distribution which departed significantly further 
from the general form of the Jagodzinski function; 
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moreover, some of the 4-layer polytype had been 
formed, as shown by  the slight accrual of scattering 
at  ~ = 90 deg. I t  may  be useful to note here tha t  this 
model can represent mixtures of 2, 3, and 4 layer 
sequences. 

Some of the associated birefringence and micro- 
diffraction work mentioned previously is relevant here. 
The 400 ° heating produced fine bands of uniform 
birefringence with An ranging from 0.015-0.020. The 
530 ° t rea tment  extended the range to 0.0085-0.020. 
The crystal separately heated directly to 530 °C 
developed a range of 0-011-0-020. Some bands were 
too thin to be measured, so tha t  these extrema 
cannot be taken too literally. The birefringence of 
Wurtzite, 0.024, is germane to this information. 

4. Discussion 

The usual vapor phase grown hexagonal ZnS crystal 
is faulted and shows, between crossed polarizers, 
many fine bands of uniform birefringence of some 
range in An. I t  has been generally assumed tha t  An 
is lower the more the faulting, although no precise 
work has been done on the correlation. The present 
author 's  work on this subject may  be abstracted for 
the present discussion as follows: (a) it has been found 
tha t  the basic difficulty in correlating a structural 
parameter  with the specific value of An in a band is 
the existence of independently diffracting domains of 
small size; (b) the range of An may be taken as a 
rough indicator of the degree of this kind of heter- 
ogeneity, rather than of the more precise degree of 
disorder. I t  is herewith suggested tha t  the two- 
parameter model basically describes the disorder in 
thermally faulted ZnS and tha t  the departure from 
fit derives from the heterogeneity of this faulted 
structure. 

This suggestion implies tha t  homogeneous domains, 
many larger than  1,000 /~ in the direction of co, 
exist in the faulted crystal, each requiring its own 
two-parameter distribution function. The independent 
scattering from these domains is additive and the 
resultant cannot be precisely fit ted by a calculated 
distribution, whatever the model. 

I t  is not unreasonable tha t  transformation faulting 
be expected to produce a heterogeneous structure. 
Jagodzinski suggested tha t  transformation might 
interfere with fitting by  calculated functions. In  
cooling the synthesized ZnS from the hexagonal 
region, transformation occurs at  a var ie ty  of nuclei, 
such as occurs in martensitic transformations. Without  
at tempting to specify their nature, these nuclei may  
be different and may be activated at  different tem- 
peratures; furthermore, their distribution along the 
crystal may  be quite accidental. The observed super- 
iori ty of fit  for the lower temperature of faulting a 
perfect crystal is compatible with the foregoing. 
Muller's difficulties in obtaining good fits may be 
similarly explained. What  constitutes Muller's best 

proof of the applicability of Jagodzinski's model to 
ZnS is the fit he showed for a case with c~--0.1, fl=0.9. 
I t  is conceivable tha t  the effect of heterogeneity on 
the observed scattering is comparatively obscured 
for cases, such as this, where the coherence in the 
two types of sequence is high. I t  is interesting tha t  the 
530 ° heating in the current work appears to have 
produced some 4I, polytype, which would augment 
the heterogeneity. 

One cannot adequately test  for this type of heter- 
ogeneity by  successive exposures along a crystal with 
a conventional X-ray beam. Visual inspection could 
indicate tha t  the same diffraction pat tern  is obtained 
all along the crystal, yet  heterogeneity could be 
widespread. Powder pat terns also may  obscure heter- 
ogeneity; some incompatibil i ty between line broaden- 
ing in the parent  phase and the diffuse scattering 
would be difficult to observe (Singer, to be published). 
A solitary instance of a single-crystal pa t tern  of faulted 
cobalt was depicted in the first work on this substance 
(Edmunds & Lipson, 1942). The pa t te rn  was made 
with a fragment in accidental orientation, yet  the 
isolated I~EL row shows two phases and further 
suggests the possibility of heterogeneity; these ob- 
servations were not made by the authors, nor has any 
at tent ion been paid to this photograph in the sub- 
sequent extensive l i terature on faulting in cobalt. 
The question might be raised, then, whether the one- 
parameter  model, which has always been employed 
with it, is correct for cobalt. Of related interest is 
the paper by Barre t t  (1950) wherein many randomly 
oriented crystallites are resolved, along with some of 
their REL rows, on Debye rings obtained with short 
range oscillation exposures; the substance was a 
faulted Cu-Si compound. Barret t  suggested tha t  
'fault-clustering' might explain some of the observa- 
tions, a term analogous to heterogeneity in its dif- 
fraction effects. Notice was taken, however, of the 
possibility tha t  a one-parameter model might be 
inadequate. 

In  the course of the present work, some at tent ion 
was given to the elegant analysis of Gevers (1954). 
I t  was soon found tha t  the further refinement offered 
by this method in terms of additional independent 
parameters, as well as separate ones for growth and 
transformation faults, could not be utilized owing to 
the irregularities in the observed distributions stem- 
ming from heterogeneity. 

5. S u m m a r y  

(A) Jagodzinski's two-parameter model, with inter- 
action across 3 layers, basically fits the observed 
scattering from faulted hexagonal ZnS. 

(B) Departures from fit are caused by  the inde- 
pendence of scattering from domains large enough to 
be resolved by the X-rays. Each domain requires its 
own distribution function to describe its structure. 

(C) The usual synthetic crystal has been faulted by 
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transformat ions  occurring during the post-synthesis 
cooling. Thus, t ransformat ion faults  are superimposed 
on any  growth fault ing.  

(D) Homogenei ty  m a y  be favored by  faul t ing in a 
l imi ted  tempera ture  range. In  ZnS, the range of 
• birefringence can be used as a rough indicat ion of 
the range of heterogeneity,  but  not of the range of 
degree of disorder. 

(E) Stacking faul t  disorder should be invest igated 
by  single-crystal  methods at  least to establish whether 
one- or two-parameter  models are applicable and 
whether the structure is homogeneous. 

A P P E N D I X  

Calculat ion  of J a g o d z i n s k i  t w o - p a r a m e t e r  
funct ions  for S - - 3  

BY G. G i s ~ v R o v  

where 

I t  has been shown by  Jagodzinski  tha t  the diffracted 
in tens i ty  for his two-parameter  model of one-dimen- 
sional disorder is proportional  to 

K~(1 - X~)  I o o ~  
,=2  [1 - 2X~ cos A s  + X~]  " 

The terms appearing in  this  equat ion have been 
defined elsewhere (Jagodzinski,  1949b). 

To faci l i tate the in tens i ty  calculation, Jagodzinski  
has t abu la ted  X,  and K~ for various combinat ions of 
a and fl parameters .  For a, fl pairs not included in 
the table,  X~ and K~ are calculated by means  of the 
following equations" * 

x~+/~x~ + [(2~- 1 ) - ( ~ -  ~)]x~ 
+ ( ~ -  ~) (1 -  ~ ) x -  ( ~ -  ~)~=0 (1) 

(x~+x~) 
K , = ½ x  s x 

(X~ -- 1 ) / / ( X ¢  -- X~) 

{ , , = ~ ( l + X ¢ ) - 3 a + ( 1 - - ~ l ) ,  (2) 

* The corresponding equations derived by Jagodzinski, 
equations (10) and (21b), were found to contain several typo- 
graphical errors. It may also be noted that equation (23) in 
Jagodzlnski's paper (Jagodzlnski, 1949b) has been rewritten 
correctly by Muller as his equation II (Muller, 1952), the 
error having been the omission of a parenthesis. 

g(xv.) = [(1 + x~x~) (] + x~x~) + (x~+ x~)(x~+ x~)] 
a, fl, y, ~ are integers 1-5 (v' 4 v) . 

Equat ion  (1) (which, in general, will have two real 
and a pair  of complex roots) m a y  be solved as follows. 
The real roots of the equat ion m a y  be found by  
the Newton-Raphson  method. The complex roots, 

exp (i~) and ~ exp ( - i ~ ) ,  are then  calculated by  
means of 

(fl_ ~ ) 2  = _ X2X~X4X5 
= - X2X8 ~2 

and 
fl = - (X2 + X8 + X4 + Xs) 

= - ( X 2 + X 3 + 2  0 cos ~) .  

I t  m a y  be ment ioned tha t  for the case a = fl, equations 
(1) and (2) reduce to 

X 2 + a X + ( 2 a - 1 ) = O  (3) 
and 

I~=- (2+X~,-3a)/(3X~(X~-Xv,))  (4) 

=(I + 2Xv,)/3(X¢-X~) 

respectively, which are ident ical  with equations VI-9  
and VI-11 of Wilson's  one-parameter  model. 

I t  is a pleasure to acknowledge the va luable  advice 
and support  of Dr J.  L. B i rman  throughout  this  work. 
The assistance of V.A.  Brophy and W. S. Romito  
is deeply appreciated. 
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